prime-factors

This commit is contained in:
Rorik Star Platinum 2025-12-14 22:44:05 +03:00
parent 9624356fec
commit ed09dd5590
5 changed files with 316 additions and 58 deletions

View file

@ -1,48 +1,91 @@
const PRIME_LEN: usize = 10_010;
const LIMIT: usize = 106_000;
struct PrimeCache {
primes: [u32; PRIME_LEN],
}
impl PrimeCache {
const fn new() -> Self {
let mut primes = [0; PRIME_LEN];
let mut sieve = [true; LIMIT];
sieve[0] = false;
sieve[1] = false;
let mut i = 2;
while i * i < LIMIT {
if sieve[i] {
let mut j = i * i;
while j < LIMIT {
sieve[j] = false;
j += i;
}
}
i += 1;
}
let mut num = 0;
let mut j = 0;
while num < LIMIT && j < PRIME_LEN {
if sieve[num] {
primes[j] = num as u32;
j += 1;
}
num += 1;
}
Self { primes }
}
}
static CACHE: PrimeCache = PrimeCache::new();
pub fn nth(n: u32) -> u32 {
let nth = n as usize;
if nth >= PRIME_LEN {
panic!("N more than comptime was calculated");
let mut num = 1;
for _ in 0..=n {
loop {
num += 1;
if is_prime(num as u64) {
break;
}
}
}
CACHE.primes[nth]
num
}
pub fn is_prime(n: u64) -> bool {
if n < 2 {
return false;
}
if n == 2 || n == 3 {
return true;
}
if n % 2 == 0 {
return false;
}
let s = (n - 1).trailing_zeros();
let d = (n - 1) >> s;
let witnesses = get_witnesses(n);
for &a in witnesses {
if !miller_rabin_test(a, d, n, s) {
return false;
}
}
true
}
fn get_witnesses(n: u64) -> &'static [u64] {
const WITNESSES: &[(u64, &[u64])] = &[
(2_046, &[2]),
(1_373_652, &[2, 3]),
(9_080_190, &[31, 73]),
(25_326_000, &[2, 3, 5]),
(4_759_123_140, &[2, 7, 61]),
(1_112_004_669_632, &[2, 13, 23, 1662803]),
(2_152_302_898_746, &[2, 3, 5, 7, 11]),
(3_474_749_660_382, &[2, 3, 5, 7, 11, 13]),
(341_550_071_728_320, &[2, 3, 5, 7, 11, 13, 17]),
(3_825_123_056_546_413_050, &[2, 3, 5, 7, 11, 13, 17, 19, 23]),
(u64::MAX, &[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]),
];
WITNESSES
.iter()
.find(|(limit, _)| *limit >= n)
.map(|(_, w)| *w)
.unwrap()
}
fn miller_rabin_test(a: u64, d: u64, n: u64, s: u32) -> bool {
let mut x = mod_pow(a, d, n);
if x == 1 || x == n - 1 {
return true;
}
for _ in 1..s {
x = mod_mul(x, x, n);
if x == n - 1 {
return true;
}
}
false
}
#[inline]
fn mod_mul(a: u64, b: u64, m: u64) -> u64 {
((a as u128 * b as u128) % m as u128) as u64
}
fn mod_pow(mut base: u64, mut exp: u64, m: u64) -> u64 {
let mut res = 1;
base %= m;
while exp > 0 {
if exp % 2 == 1 {
res = mod_mul(res, base, m);
}
base = mod_mul(base, base, m);
exp /= 2;
}
res
}

View file

@ -0,0 +1,82 @@
fn main() {
let n: u64 = std::env::args().nth(1)
.and_then(|s| s.parse().ok())
.unwrap_or(35);
println!("{} -> {}", n, if is_prime(n) { "prime" } else { "composite" });
}
pub fn is_prime(n: u64) -> bool {
if n < 2 { return false; }
if n == 2 || n == 3 { return true; }
if n % 2 == 0 { return false; }
let s = (n - 1).trailing_zeros();
let d = (n - 1) >> s;
let witnesses = get_witnesses(n);
for &a in witnesses {
if !miller_rabin_test(a, d, n, s) {
return false;
}
}
true
}
// O(1) lookup based on input size
fn get_witnesses(n: u64) -> &'static [u64] {
const WITNESSES: &[(u64, &[u64])] = &[
(2_046, &[2]),
(1_373_652, &[2, 3]),
(9_080_190, &[31, 73]),
(25_326_000, &[2, 3, 5]),
(4_759_123_140, &[2, 7, 61]),
(1_112_004_669_632, &[2, 13, 23, 1662803]),
(2_152_302_898_746, &[2, 3, 5, 7, 11]),
(3_474_749_660_382, &[2, 3, 5, 7, 11, 13]),
(341_550_071_728_320, &[2, 3, 5, 7, 11, 13, 17]),
(3_825_123_056_546_413_050, &[2, 3, 5, 7, 11, 13, 17, 19, 23]),
(u64::MAX, &[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]),
];
WITNESSES.iter()
.find(|(limit, _)| *limit >= n)
.map(|(_, w)| *w)
.unwrap()
}
fn miller_rabin_test(a: u64, d: u64, n: u64, s: u32) -> bool {
let mut x = mod_pow(a, d, n);
if x == 1 || x == n - 1 {
return true;
}
for _ in 1..s {
x = mod_mul(x, x, n);
if x == n - 1 {
return true;
}
}
false
}
// === Math Core ===
#[inline]
fn mod_mul(a: u64, b: u64, m: u64) -> u64 {
((a as u128 * b as u128) % m as u128) as u64
}
fn mod_pow(mut base: u64, mut exp: u64, m: u64) -> u64 {
let mut res = 1;
base %= m;
while exp > 0 {
if exp % 2 == 1 {
res = mod_mul(res, base, m);
}
base = mod_mul(base, base, m);
exp /= 2;
}
res
}

View file

@ -0,0 +1,115 @@
pub fn nth(n: u32) -> u32 {
let mut num = 1;
for _ in 0..=n {
loop {
num += 1;
if miller_rabin(num as u64) {
break;
}
}
}
num
}
fn miller_rabin(n: u64) -> bool {
const HINT: &[u64] = &[2];
// we have a strict upper bound, so we can just use the witness
// table of Pomerance, Selfridge & Wagstaff and Jeaschke to be as
// efficient as possible, without having to fall back to
// randomness. Additional limits from Feitsma and Galway complete
// the entire range of `u64`. See also:
// https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test#Testing_against_small_sets_of_bases
const WITNESSES: &[(u64, &[u64])] = &[
(2_046, HINT),
(1_373_652, &[2, 3]),
(9_080_190, &[31, 73]),
(25_326_000, &[2, 3, 5]),
(4_759_123_140, &[2, 7, 61]),
(1_112_004_669_632, &[2, 13, 23, 1662803]),
(2_152_302_898_746, &[2, 3, 5, 7, 11]),
(3_474_749_660_382, &[2, 3, 5, 7, 11, 13]),
(341_550_071_728_320, &[2, 3, 5, 7, 11, 13, 17]),
(3_825_123_056_546_413_050, &[2, 3, 5, 7, 11, 13, 17, 19, 23]),
(std::u64::MAX, &[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]),
];
if n % 2 == 0 {
return n == 2;
}
if n == 1 {
return false;
}
let mut d = n - 1;
let mut s = 0;
while d % 2 == 0 {
d /= 2;
s += 1
}
let witnesses = WITNESSES
.iter()
.find(|&&(hi, _)| hi >= n)
.map(|&(_, wtnss)| wtnss)
.unwrap();
'next_witness: for &a in witnesses.iter() {
let mut power = mod_exp(a, d, n);
assert!(power < n);
if power == 1 || power == n - 1 {
continue 'next_witness;
}
for _r in 0..s {
power = mod_sqr(power, n);
assert!(power < n);
if power == 1 {
return false;
}
if power == n - 1 {
continue 'next_witness;
}
}
return false;
}
true
}
fn mod_mul_(a: u64, b: u64, m: u64) -> u64 {
(u128::from(a) * u128::from(b) % u128::from(m)) as u64
}
fn mod_mul(a: u64, b: u64, m: u64) -> u64 {
match a.checked_mul(b) {
Some(r) => {
if r >= m {
r % m
} else {
r
}
}
None => mod_mul_(a, b, m),
}
}
fn mod_sqr(a: u64, m: u64) -> u64 {
if a < (1 << 32) {
let r = a * a;
if r >= m { r % m } else { r }
} else {
mod_mul_(a, a, m)
}
}
fn mod_exp(mut x: u64, mut d: u64, n: u64) -> u64 {
let mut ret: u64 = 1;
while d != 0 {
if d % 2 == 1 {
ret = mod_mul(ret, x, n)
}
d /= 2;
x = mod_sqr(x, n);
}
ret
}

View file

@ -1,3 +1,32 @@
pub fn factors(n: u64) -> Vec<u64> {
todo!("This should calculate the prime factors of {n}")
pub trait PrimeCollector {
fn get_counted(&mut self, prime: u64) -> Vec<u64>;
}
impl PrimeCollector for u64 {
fn get_counted(&mut self, prime: u64) -> Vec<u64> {
let mut res: Vec<_> = Vec::new();
while 0 == *self % prime {
*self /= prime;
res.push(prime);
}
res
}
}
pub fn factors(n: u64) -> Vec<u64> {
let mut res: Vec<_> = Vec::new();
let mut n_remained = n;
let mut i = 2;
while i * i <= n_remained {
if n_remained % i == 0 {
res.extend(n_remained.get_counted(i));
}
i += 1;
}
if n_remained > 1 {
res.push(n_remained);
}
res
}

View file

@ -8,7 +8,6 @@ fn no_factors() {
}
#[test]
#[ignore]
fn prime_number() {
let factors = factors(2);
let expected = [2];
@ -16,7 +15,6 @@ fn prime_number() {
}
#[test]
#[ignore]
fn another_prime_number() {
let factors = factors(3);
let expected = [3];
@ -24,7 +22,6 @@ fn another_prime_number() {
}
#[test]
#[ignore]
fn square_of_a_prime() {
let factors = factors(9);
let expected = [3, 3];
@ -32,7 +29,6 @@ fn square_of_a_prime() {
}
#[test]
#[ignore]
fn product_of_first_prime() {
let factors = factors(4);
let expected = [2, 2];
@ -40,7 +36,6 @@ fn product_of_first_prime() {
}
#[test]
#[ignore]
fn cube_of_a_prime() {
let factors = factors(8);
let expected = [2, 2, 2];
@ -48,7 +43,6 @@ fn cube_of_a_prime() {
}
#[test]
#[ignore]
fn product_of_second_prime() {
let factors = factors(27);
let expected = [3, 3, 3];
@ -56,7 +50,6 @@ fn product_of_second_prime() {
}
#[test]
#[ignore]
fn product_of_third_prime() {
let factors = factors(625);
let expected = [5, 5, 5, 5];
@ -64,7 +57,6 @@ fn product_of_third_prime() {
}
#[test]
#[ignore]
fn product_of_first_and_second_prime() {
let factors = factors(6);
let expected = [2, 3];
@ -72,7 +64,6 @@ fn product_of_first_and_second_prime() {
}
#[test]
#[ignore]
fn product_of_primes_and_non_primes() {
let factors = factors(12);
let expected = [2, 2, 3];
@ -80,7 +71,6 @@ fn product_of_primes_and_non_primes() {
}
#[test]
#[ignore]
fn product_of_primes() {
let factors = factors(901_255);
let expected = [5, 17, 23, 461];
@ -88,7 +78,6 @@ fn product_of_primes() {
}
#[test]
#[ignore]
fn factors_include_a_large_prime() {
let factors = factors(93_819_012_551);
let expected = [11, 9_539, 894_119];